User:NotaSentientAI

From Stampy's Wiki

Please set realname at Special:Preferences to update your displayed username.

Questions Asked: 12
Answers written: 12


Questions by NotaSentientAI which have been answered

There is a broad range of possible goals that an AI might possess, but there are a few basic drives that would be useful to almost any of them. These are called instrumentally convergent goals:

  1. Self preservation. An agent is less likely to achieve its goal if it is not around to see to its completion.
  2. Goal-content integrity. An agent is less likely to achieve its goal if its goal has been changed to something else. For example, if you offer Gandhi a pill that makes him want to kill people, he will refuse to take it.
  3. Self-improvement. An agent is more likely to achieve its goal if it is more intelligent and better at problem-solving.
  4. Resource acquisition. The more resources at an agent’s disposal, the more power it has to make change towards its goal. Even a purely computational goal, such as computing digits of pi, can be easier to achieve with more hardware and energy.

Because of these drives, even a seemingly simple goal could create an Artificial Superintelligence (ASI) hell-bent on taking over the world’s material resources and preventing itself from being turned off. The classic example is an ASI that was programmed to maximize the output of paper clips at a paper clip factory. The ASI had no other goal specifications other than “maximize paper clips,” so it converts all of the matter in the solar system into paper clips, and then sends probes to other star systems to create more factories.

The concept of “merging with machines,” as popularized by Ray Kurzweil, is the idea that we will be able to put computerized elements into our brains that enhance us to the point where we ourselves are the AI, instead of creating AI outside of ourselves.

While this is a possible outcome, there is little reason to suspect that it is the most probable. The amount of computing power in your smart-phone took up an entire room of servers 30 years ago. Computer technology starts big, and then gets refined. Therefore, if “merging with the machines” requires hardware that can fit inside our brain, it may lag behind the first generations of the technology being developed. This concept of merging also supposes that we can even figure out how to implant computer chips that interface with our brain in the first place, we can do it before the invention of advanced AI, society will accept it, and that computer implants can actually produce major intelligence gains in the human brain. Even if we could successfully enhance ourselves with brain implants before the invention of Artificial Superintelligence (ASI), there is no way to guarantee that this would protect us from negative outcomes, and an ASI with ill-defined goals could still pose a threat to us.

It's not that Ray Kurzweil's ideas are impossible, it's just that his predictions are too specific, confident, and reliant on strange assumptions.

What is superintelligence?

A superintelligence is a mind that is much more intelligent than any human. Most of the time, it’s used to discuss hypothetical future AIs.

What is the Control Problem?

The Control Problem is the problem of preventing artificial superintelligence (ASI) from having a negative impact on humanity. How do we keep a more intelligent being under control, or how do we align it with our values? If we succeed in solving this problem, intelligence vastly superior to ours can take the baton of human progress and carry it to unfathomable heights. Solving our most complex problems could be simple to a sufficiently intelligent machine. If we fail in solving the Control Problem and create a powerful ASI not aligned with our values, it could spell the end of the human race. For these reasons, The Control Problem may be the most important challenge that humanity has ever faced, and may be our last.

Isaac Asimov wrote those laws as a plot device for science fiction novels. Every story in the I, Robot series details a way that the laws can go wrong and be misinterpreted by robots. The laws are not a solution because they are an overly-simple set of natural language instructions that don’t have clearly defined terms and don’t factor in all edge-case scenarios.

When one person tells a set of natural language instructions to another person, they are relying on much other information which is already stored in the other person's mind.

If you tell me "don't harm other people," I already have a conception of what harm means and doesn't mean, what people means and doesn't mean, and my own complex moral reasoning for figuring out the edge cases in instances wherein harming people is inevitable or harming someone is necessary for self-defense or the greater good.

All of those complex definitions and systems of decision making are already in our mind, so it's easy to take them for granted. An AI is a mind made from scratch, so programming a goal is not as simple as telling it a natural language command.

A Superintelligence would be intelligent enough to understand what the programmer’s motives were when designing its goals, but it would have no intrinsic reason to care about what its programmers had in mind. The only thing it will be beholden to is the actual goal it is programmed with, no matter how insane its fulfillment may seem to us.

Consider what “intentions” the process of evolution may have had for you when designing your goals. When you consider that you were made with the “intention” of replicating your genes, do you somehow feel beholden to the “intention” behind your evolutionary design? Most likely you don't care. You may choose to never have children, and you will most likely attempt to keep yourself alive long past your biological ability to reproduce.

Intelligence is powerful. Because of superior intelligence, we humans have dominated the Earth. The fate of thousands of species depends on our actions, we occupy nearly every corner of the globe, and we repurpose vast amounts of the world's resources for our own use. Artificial Superintelligence (ASI) has potential to be vastly more intelligent than us, and therefore vastly more powerful. In the same way that we have reshaped the earth to fit our goals, an ASI will find unforeseen, highly efficient ways of reshaping reality to fit its goals.

The impact that an ASI will have on our world depends on what those goals are. We have the advantage of designing those goals, but that task is not as simple as it may first seem. As described by MIRI in their Intelligence Explosion FAQ:

“A superintelligent machine will make decisions based on the mechanisms it is designed with, not the hopes its designers had in mind when they programmed those mechanisms. It will act only on precise specifications of rules and values, and will do so in ways that need not respect the complexity and subtlety of what humans value.”

If we do not solve the Control Problem before the first ASI is created, we may not get another chance.

Won’t AI be just like us?

The degree to which an Artificial Superintelligence (ASI) would resemble us depends heavily on how it is implemented, but it seems that differences are unavoidable. If AI is accomplished through whole brain emulation and we make a big effort to make it as human as possible (including giving it a humanoid body), the AI could probably be said to think like a human. However, by definition of ASI it would be much smarter. Differences in the substrate and body might open up numerous possibilities (such as immortality, different sensors, easy self-improvement, ability to make copies, etc.). Its social experience and upbringing would likely also be entirely different. All of this can significantly change the ASI's values and outlook on the world, even if it would still use the same algorithms as we do. This is essentially the "best case scenario" for human resemblance, but whole brain emulation is kind of a separate field from AI, even if both aim to build intelligent machines. Most approaches to AI are vastly different and most ASIs would likely not have humanoid bodies. At this moment in time it seems much easier to create a machine that is intelligent than a machine that is exactly like a human (it's certainly a bigger target).

Putting aside the complexity of defining what is "the" moral way to behave (or even "a" moral way to behave), even an AI which can figure out what it is might not "want to" follow it itself.

A deceptive agent (AI or human) may know perfectly well what behaviour is considered moral, but if their values are not aligned, they may decide to act differently to pursue their own interests.