brain-computer interfaces

From Stampy's Wiki
Brain-computer interfaces
brain-computer interfaces
LessWrong Tag
Wikipedia Page

Description

A Brain Computer Interface (BCI) is the generic term used to describe any kind of system that serves as a communication bridge between the brain (human or not) and an artificial module. It’s a field of research in which wide investment has been made since the 1970’s, especially in the clinical fields and ergonomics. Generally speaking, any kind of brain activity that can be recorded can be used as a means of communicating with another system. Through the use of statistical classification techniques it’s possible to associate certain states or characteristics of the recorded signal – which the experiment subject learns to control - to any procedure, usually mediated by a computer.

A Brain Computer Interface (BCI) is the generic term used to describe any kind of system that serves as a communication bridge between the brain (human or not) and an artificial module. It’s a field of research in which wide investment has been made since the 1970’s, especially in the clinical fields and ergonomics. Generally speaking, any kind of brain activity that can be recorded can be used as a means of communicating with another system. Through the use of statistical classification techniques it’s possible to associate certain states or characteristics of the recorded signal – which the experiment subject learns to control - to any procedure, usually mediated by a computer.

Many techniques have been developed to help us look and better understand the way the brain works. They range from imaging techniques (like MRI, fMRI, fNIRS or PET), to electrophysiological ones (like EEG, EcG or MEG). While the first category is usually used to obtain high resolution images of brain structures and the second one to register and analyze the electrical activity produced by the brain, with a high temporal resolution – which is why they are the ones mainly used in the field of BCI’s. In pair with such methods, although a different area in itself, includes brain implants capable of communicating directly with the neuronal tissue - neuroprosthetics.

EEG BCIs

Of all the different means avaliable, the registering of the electroencephalographic (EEG) activity is the most developed and extensively researched of this fields. It allows us, in a non-invasive way, to peak the brain functioning with a high temporal resolution – furthermore, it is now well established that different brain states produce distinct observable activity. With the help of electrodes placed on the scalp, it is possible to feed this activity and their respective variations and patterns to any system capable of classifying and detecting them in real time and act accordingly (making this a field highly interconnected to that of machine learning).

The field of BCIs has followed closely the developments in signal processing and classification, along with the increasing computational power available. It was firstly researched as a communication means (for people unable to move, for instance) through the detection of ERPs – event related potentials, small variations of amplitude associated to the presentation of certain stimuli - as well as a way of automatically detecting epileptic seizures. Also, much owing to the first and major financers of such research, the DARPA, the use of BCIs has been always closed associated to the military field. This has allowed insights regarding the detection of mental states of fatigue and attention variations, which has led to the development of informatics systems capable of adapting to the mental state of the user.

Currently we have available a considerable range of both research and commercial applications of EEG based BCI systems with a wide list of applications. It has shown to be a field due to receive increased attention in the next years, especially through the developing of increasingly efficient classification algorithms and computer power, and the fascination with the cognitive augmentation it might bring.

Potential applications

Although the EEG has been the main technique used for the development of such systems, it has been shown to be possible to integrate electronic controllers directly in the functioning of single cells or even networks. The permanent implant of devices for interpretation and regulation of cortical activity has also been demonstrated.

This has led to a renewed interest in the field and the exploration of new hypothesis, like drug rehabilitation through the detection of relevant cues and stimulation of the brain reward system, rehabilitation after strokes or lesion and even direct transmission of patterns of thought between subjects.

Other attractive future application includes the upload of the whole content of the brain, and thus the mind, to a computer. Although still speculative, it seems theoretically possible.

External Links

Further Reading & References

  • Anderson, J. (1980). Neurocomputing. Cambridge: The MIT Press
  • Muller, D. (1995). Towards brain–computer interfacing. MIT Press, Cambridge, MA, 409–422.
  • Niedermeyer, E., & Lopes da Silva, F. (2004). Electroencephalography: Basic Principles. Clinical Applications and Related Fields. London
  • Vidal, J. (1977). Real-Time Detection of Brain Events in EEG. IEEE Proceedings, 65 (5), 633–641
  • Parasuraman, R. (2003). Neuroergonomics: Research and practice. Theoretical Issues in Ergonomics Science, 4, 5–20.

See Also

Canonically answered

What are brain-computer interfaces?

Show your endorsement of this answer by giving it a stamp of approval!

A brain-computer interface (BCI) is a direct communication pathway between the brain and a computer device. BCI research is heavily funded, and has already met dozens of successes. Three successes in human BCIs are a device that restores (partial) sight to the blind, cochlear implants that restore hearing to the deaf, and a device that allows use of an artificial hand by direct thought.

Such device restore impaired functions, but many researchers expect to also augment and improve normal human abilities with BCIs. Ed Boyden is researching these opportunities as the lead of the Synthetic Neurobiology Group at MIT. Such devices might hasten the arrival of an intelligence explosion, if only by improving human intelligence so that the hard problems of AI can be solved more rapidly.

See also:

Wikipedia, Brain-computer interface

Non-canonical answers

Is merging with AI through brain-computer interfaces a potential solution to safety problems?

Show your endorsement of this answer by giving it a stamp of approval!

It's not completely clear exactly what 'merging' with AI would imply, but it doesn't seem like a way to get around the alignment problem. If the AI system is aligned, and wants to do what humans want, then having direct access to human brains could provide a lot of information about human values and goals very quickly and efficiently, and thus be helpful for better alignment. Although, a smart AI system could also get almost all of this information without a brain-computer interface, through conversation, observation etc, though much slower. On the other hand if the system is not aligned, and doesn't fundamentally want humans to get what we want, then extra information about how human minds work doesn't help and only makes the problem worse. Allowing a misaligned AGI direct access to your brain hardware is a bad idea for obvious reasons.

Unanswered non-canonical questions