recursive self-improvement
Main Question: How might we get from Artificial General Intelligence to a Superintelligent system? (edit question) (edit answer) |
Alignment Forum Tag |
Wikipedia Page |
Description
Canonically answered
Can you stop an advanced AI from upgrading itself?
It depends on what is meant by advanced. Many AI systems which are very effective and advanced narrow intelligences would not try to upgrade themselves in an unbounded way, but becoming smarter is a convergent instrumental goal so we could expect most AGI designs to attempt it.
The problem is that increasing general problem solving ability is climbing in exactly the direction needed to trigger an intelligence explosion, while generating large economic and strategic payoffs to whoever achieves them. So even though we could, in principle, just not build the kind of systems which would recursively self-improve, in practice we probably will go ahead with constructing them, because they’re likely to be the most powerful.
What is Artificial General Intelligence and what will it look like?
Why can't we just turn the AI off if it starts to misbehave?
We could shut down weaker systems, and this would be a useful guardrail against certain types of problem caused by narrow AI. However, once an AGI establishes itself, we could not unless it was corrigible and willing to let humans adjust it. There may be a period in the early stages of an AGI's development where it would be trying very hard to convince us that we should not shut it down and/or hiding itself and/or recursively self-improving and/or making copies of itself onto every server on earth.
Instrumental Convergence and the Stop Button Problem are the key reasons it would not be simple to shut down a non corrigible advanced system. If the AI wants to collect stamps, being turned off means it gets less stamps, so even without an explicit goal of not being turned off it has an instrumental reason to avoid being turned off (e.g. once it acquires a detailed world model and general intelligence, it is likely to realise that by playing nice and pretending to be aligned if you have the power to turn it off, establishing control over any system we put in place to shut it down, and eliminating us if it has the power to reliably do so and we would otherwise pose a threat).
Blindly following the trendlines while forecasting technological progress is certainly a risk (affectionately known in AI circles as “pulling a Kurzweill”), but sometimes taking an exponential trend seriously is the right response.
Consider economic doubling times. In 1 AD, the world GDP was about $20 billion; it took a thousand years, until 1000 AD, for that to double to $40 billion. But it only took five hundred more years, until 1500, or so, for the economy to double again. And then it only took another three hundred years or so, until 1800, for the economy to double a third time. Someone in 1800 might calculate the trend line and say this was ridiculous, that it implied the economy would be doubling every ten years or so in the beginning of the 21st century. But in fact, this is how long the economy takes to double these days. To a medieval, used to a thousand-year doubling time (which was based mostly on population growth!), an economy that doubled every ten years might seem inconceivable. To us, it seems normal.
Likewise, in 1965 Gordon Moore noted that semiconductor complexity seemed to double every eighteen months. During his own day, there were about five hundred transistors on a chip; he predicted that would soon double to a thousand, and a few years later to two thousand. Almost as soon as Moore’s Law become well-known, people started saying it was absurd to follow it off a cliff – such a law would imply a million transistors per chip in 1990, a hundred million in 2000, ten billion transistors on every chip by 2015! More transistors on a single chip than existed on all the computers in the world! Transistors the size of molecules! But of course all of these things happened; the ridiculous exponential trend proved more accurate than the naysayers.
None of this is to say that exponential trends are always right, just that they are sometimes right even when it seems they can’t possibly be. We can’t be sure that a computer using its own intelligence to discover new ways to increase its intelligence will enter a positive feedback loop and achieve superintelligence in seemingly impossibly short time scales. It’s just one more possibility, a worry to place alongside all the other worrying reasons to expect a moderate or hard takeoff.
Non-canonical answers
Why does there seem to have been an explosion of activity in AI in recent years?
In addition to the usual continuation of Moore's Law, GPUs have become more powerful and cheaper in the past decade, especially since around 2016. Many ideas in AI have been thought about for a long time, but the speed at which modern processors can do computing and parallel processing allows researchers to implement their ideas and gather more observational data. Improvements in AI have allowed many industries to start using the technologies, which creates demand and brings more focus on AI research (as well as improving the availability of technology on the whole due to more efficient infrastructure). Data has also become more abundant and available, and not only is data a bottleneck for machine learning algorithms, but the abundance of data is difficult for humans to deal with alone, so businesses often turn to AI to convert it to something human-parsable. These processes are also recursive, to some degree, so the more AI improves, the more can be done to improve AI.
How could general intelligence be programmed into a machine?
There are many paths to artificial general intelligence (AGI). One path is to imitate the human brain by using neural nets or evolutionary algorithms to build dozens of separate components which can then be pieced together (Neural Networks and Natural Intelligence., A ‘neural-gas’ network learns topologies., pp.159-174). Another path is to start with a formal model of perfect general intelligence and try to approximate that(pp. 199-223, pp. 227-287). A third path is to focus on developing a ‘seed AI’ that can recursively self-improve, such that it can learn to be intelligent on its own without needing to first achieve human-level general intelligence (link). Eurisko is a self-improving AI in a limited domain, but is not able to achieve human-level general intelligence.
See also:
- Pennachin & Goertzel, Contemporary Approaches to Artificial General Intelligence